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ABSTRACT 

The relativistic oscillatory motion is studied'by the method 

of canonical transformation. 

are considered: 

relativist%c daaqed osci71ntor. !Be transfonpstione ere perfor?ped 

in a mathematical way according to an operational method of reht,iviS- 

Two types of relativistic osci17ntoz-a 
! 

! 

, 
1 (1) relatlvlstic harmonic oscillator, and (2) 

1 

t i c  perturbt~tlops cosserviag Rnmil*nIm fonnulislp. The ultimate . i 

I 

I . .  

nature of the rslatitristic oscillation i e  adyzed. I 
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I. INTROWCIIIOES 

Struble and brris'l) have criticized Mitchell and p 0 p e ' S  (2) . 

work on the rela;tivistic dmqped oscillator and have presented tbeir 

results on the same problem. 

and Harris does A& peFlnit a deeper wight into the nature of the 

However, the S O h L t i o n  given by Str i ib la  

problem because It I s  assumed in a series fonn. 

In th is  paper canonical transfonnatione are offered for the 

analysis of the re lat ivis t ic  osci3l.atory motion. 

of the use of canonical system of equations t o  treat this problem 

is that solutions can be obtained in a c e r t a i n  desired fom so 

that the ultimate nature of the relativlst ic oscil latnry motion 

is revealed. 

of the principle *velopea o a i n a l l y  by von zeipe1'3), confirms 

the results obtained by Penfield and Zat~kis'~), Mitchell and 

pope"). The Von Zeipel's method has been used with success in 

the study of motion of artificial satellites(5) . 1%. application to 

this type of problem is apgarently new. 

The advantage 

The method of canonical transformation, an adaptation 

I *  
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The three-dimensional forn of Einstein's seccmd l a w  of motion 
(6) for a particle is 

in which m, is the rest mass, V t h e  velocity of the particle, C the 
? 

velocity of Ught in a vacuum andFrepresents force. :; 
I, 

!.\ 

t .  

1' 

ti 
i; 

If the.motion of the particle i s  described relative to the 

1.1 

.\ 

inertial coordinate system in which the origin coincides w i t h  the 

equilibrium position of the particle and the X-axis represents the 
a .  

straight line on which it w o e s ,  t h e  equations of oscillatory motion 
.'i . 

are 

. .  
i '  
t (  

where k is the spring modulus and r the damping constant. The ! '  
I '  :. 

8 1 ' 3  
1,' 

A 1. ' )i initial conditions as6umed to be and J'=Oat time -f= 0. . 
~f one introduces the Newtonian angular frequencyd=(&ig, i;; 

r !  
, .  

the Newtonian damping coefficientj=~ZA'& and the characteristic 
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conjugates to Q equation (2) becomes 

. I  1 In terlnrs of the nondimensional variables the initial conditions 

are Q = 1 sad p .I 0 at = 0. Subjecting to these initial copdj- 

tions a solution of eqpation (3) &e desired. . , 
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SIX. cmomIcAL VARIABtES AM> !JxANsFmmIoB 

Consider the dynamic& system to be perturbed by externel. 

forces due to re lat ivis t ic  effect such that the canonical equations 

describing the motion of  the system are . 

appropriate transformation method is used, the e¶mtions bscdb-  

the motion of the system w i l l  remain canonical although o? a . 

. .  

. .  

*ere H = i~(p,q) is the Rnmiltanian of the system, and 2 ~ 3  2 )  

and ~ { ~ ~ ~ )  

re lat ivis t ic  effect. 

are external perturbing forces due to the 

.A fundanrental theorem in the transformation theory of 

theoretical mechanics is that a transformation of variables con- 

serving the Hamiltonian f o r m u l i s m  may be mad; providing the 

Hamiltonian does not have an explicit dependence OA time. 
-4 

r /  If an 

different functional form of the Eamiltonian. . '  .- 
t 

'-Let a transformstion to nm yasiables be giveld in tbe form 

The question is, under w h a t  circumstances will the trans- 
.. 

fonnation be canonicalr-Le., under u h a t ~ a ~ c u r n e ~ e s . ~ ~ e ! n e w  
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This'transfonnetion of variables cari be &ne in the folloxing 

respectively and add. The sum is  

Since 

._ 

. .  

.I- equation ( 9 )  becomes 1 . 

It can be shown that the bgrangian bracket [., L/ equals 

d'Wfor  a canonical transformation where the Hamiltonian i s  un- 

changed. Hence 
I '  

. I  . .  . . .  . . ,  . 



Comparing equation (ll) w i t h  equation ('7) one obtains 
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me Cme of the re lat ivis t ic  oscillator Without w i n g  is a 

relativist ic h-OAiC Oscillator. 

motion by placing d = o  in equation (3) 

One obtains the equation of 

where terms of order /i2 and hie;her are omitted. The appearances 

is a direct consequence of the re lat ivis t ic  perturbation of 
O f f  
the problem. The Hamiltonian of the Newtonian hennon3.c osciUator 

I S  

and the solution of the Newtonian harmonic oscf.I1tor subjecting 

to the i n i t i d  conditionsf= o a n d J = s  can be earessed in 
f I .  

the s r i o d i c  form 

By lett ing 1 =: 2-2 and the total. energy of the Newtonian 
2 I 

? 

60 that eQuationS(l6>are transformed to . I 
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I and the cmonicai equ$iions of the relativistic system are 
I A . i  

I 

* r  

Upon differentiating equations (17) and ClS), the results are 

- 1  

, ;* 
l<  

By substituting these results equations (l.2) and (13) become 
9 / I  j '  

1 ,  (8 )  one obtains 



c . .  
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Therefore the solution of equation (14) is 

The 

the 

ana 

The 

where 1: and 1 are given by equations (24 and (25). 

%le physical interpretation of these results is as folzoxs. 

displacement after an interval c-2 . may be determined from 
NewLonian harmonic oscillator by considering that the amplitude 

frequency are time varying due to the relativistic perturbation. 

variation in frequency is inherent in equation (24). 
I 

The 

variation i n  m&i%udF i s  given by equation (25 ) .  

also shows that the amplitude of the relativistic harnonic oscil- 

latorymotion to have no secular terms. 

decrease without bound but is represented by a constant plus 

trigononetric terns having frequencies which * are multiples of the 

fundanental frequency of "the system. 

The results 

It does not increase or 

the values averaged over one period, one obtains 

- Substituting 
to obtain .a first 

these average 

approximation 

values 

to the 

. .  * *  

in equation (26) in order 

solution, the result is 

. . , 
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J Tnus, referring t o  the definitions of q, Q aid , the first 

approxixiation t o  the solution of the relativist ic harmonic oscillator 

is 

Eq-ation (28) rqresents  the relat ivis t ic  harmonic oscillation with 

constant amplitude and constant frequency. The frequency is 3zrJ1ess 2 
I t  \ 

t i a n  t'mt of the Newtonian hannonic oscillator. 

arrive a t  the same result  by using the energy Brinciple i n  re la t ivis t ic  

Penfield and Zatz l r i s  L 4 )  

dynamics. 

Equation (3) describes the motion of the relat ivis t ic  damped 

oscillator. 

application of t;?e canonical. transformation. 

&Further %ransfonnation of t h i s  equation procedes the 

After suitable changes 
! '  

of both independent and dependent variables, and a reidentification 

of the parameters, the equation of motion assumes a f o m  particularly 

suited f o r  the Von Z e i p e l ' s  technique. 
\ 

Equation (3) is revritten * . .. 

C h m g i n g  of the independent and' dependent variables according 

to 
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and i h t L 2  the new parmeters 

* .  

. .  " -  

I The new parsmeter c: cou@es the independent parameters p and a. $ 1  

!&e restriction a < 1 ensures that c: will be smaller than b.- It 

is to be noted that the appearance of E is a direct consequence of 

the relativistic-perturbation of t;he system. 5e.finmiltanian"of the 

mpertLwbed system i s  

and "&e solution of the unlperturbed s y s t e n  subjecting to the trans- I 
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D 

so that equations (32) 

_. 

The canonical equations of the perturbed system are 

I .  

where 

J &; = L, =Hu,-) 
In & a s  expression .. terms of'order e2 and bi@;her are omitted. 
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BY differentiation (9) and (35) the results are 

Substituting "Aese results in equtions 12) and (l3), one obtains 
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Substituting equations (381, (41) and (42) i n  equations (7) and (8 )  

one obtains - ,  .. 

i 

t I .  

merefore * solution equation ( x )  IS 

. -. . .  . .  

. .  . . "(4.5) ' .  . i :. 

. .* 
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where L and 4 are given by equations (43) and (44). 

T a k h g  the values averaged over one period the results are 
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Using these average 

to the solution one 

values in order to obtain a first approximation 

O l X t a l l U  

. 

I . '  

Referring to tbe dsffnificrms of q, 

approximate solution of the relativistic damped oscillator I s  

*lr  end T,. the first '.* 

J 

* 
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(46) 

(47) 
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I where 

I 

. 
The motion as described by equation (48) is a re lat ivis t ic  * 

1 .  

damped oscillatory~raotion. Since the relativistic 8qplltud.e coeffi- 

cient A i s  alway'S positive the damping; of the amplitude here is less 

effective than that of a correspondLng Nextonian damp& oscillator. 

The frequency is coqstant. It is t o  be noted that the relativistic 

pbase angle shift is determined by the value of the relativistic phase 

coefficient 3. Ilhe difference of phase angles between the 

relativistic and the Iiewtonian damped oscillators i s  determined by 

the value of (l-A2-5A4-3A6). If l-A2-5A4-3A6 - 0, the phase angle of 

the relativist ic oscillator equals that of the Nevtonien oscillator; 

The phase angle of the relativist ic oscillator is larger or d e r  

than that of the NeKtoniar: one a c c w  to l -p -5A4-3A6  < . .  0 or 

,,' 

. .- 
.* 

V I .  ''=ATm. OF s m m s  

The ultimate nature of the relativistic oscillatory motion is 

!De relat ivis t ic  effect upon 
..a 

concisely revealed by equation (48). 

the amplitude and the relativist ic phase shift are clearly exhibited. 
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- 0  

I 
. #  

- 1  - t *  . 

solution is valid. 

equation (48) meets the Urniting conditions imposed. 

of relativistic effect, i.e., e = 0, the relativistic amplltuds 

It can be shown t n a t  the solution represented by 

In the absence 

I 
I coefficient A and relativ%atic phase coefficient B beccrrpe zero. 

~cmtuqpy, equstina (48) reduces to 
I 

4 

forms 

' .  

.. 

: . 

Such a compactness of representation perrnits 

, . . .  



This presentation also Shovs that the Bewtonian oscillator can indeed 

be considered as a close analsgy as  ell 88 mathematical limit of the 

relativistic osciUa- motion. Equation (48) satisfies the equation 

of motion (3) subject 

t = o to w i a  a Quantity of -e order of 8. !i!im solutionmraybe 

carried aut to any destmd degree of accuracy 2n tenw of hiphar cxrders 

. to the initial coaditions p = 0, q 1 when 
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